Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A fundamental problem in functional data analysis is to classify a functional observation based on training data. The application of functional data classification has gained immense popularity and utility across a wide array of disciplines, encompassing biology, engineering, environmental science, medical science, neurology, social science, and beyond. The phenomenal growth of the application of functional data classification indicates the urgent need for a systematic approach to develop efficient classification methods and scalable algorithmic implementations. Therefore, we here conduct a comprehensive review of classification methods for functional data. The review aims to bridge the gap between the functional data analysis community and the machine learning community, and to intrigue new principles for functional data classification. This article is categorized under:Statistical Learning and Exploratory Methods of the Data Sciences > Clustering and ClassificationStatistical Models > Classification ModelsData: Types and Structure > Time Series, Stochastic Processes, and Functional Datamore » « less
-
Abstract Functional data analysis is an evolving field focused on analyzing data that reveals insights into curves, surfaces, or entities within a continuous domain. This type of data is typically distinguished by the inherent dependence and smoothness observed within each data curve. Traditional functional data analysis approaches have predominantly relied on linear models, which, while foundational, often fall short in capturing the intricate, nonlinear relationships within the data. This paper seeks to bridge this gap by reviewing the integration of deep neural networks into functional data analysis. Deep neural networks present a transformative approach to navigating these complexities, excelling particularly in high‐dimensional spaces and demonstrating unparalleled flexibility in managing diverse data constructs. This review aims to advance functional data regression, classification, and representation by integrating deep neural networks with functional data analysis, fostering a harmonious and synergistic union between these two fields. The remarkable ability of deep neural networks to adeptly navigate the intricate functional data highlights a wealth of opportunities for ongoing exploration and research across various interdisciplinary areas. This article is categorized under:Data: Types and Structure > Time Series, Stochastic Processes, and Functional DataStatistical Learning and Exploratory Methods of the Data Sciences > Deep LearningStatistical Learning and Exploratory Methods of the Data Sciences > Neural Networksmore » « less
-
In this work, we propose a deep neural networks‐based method to perform non‐parametric regression for functional data. The proposed estimators are based on sparsely connected deep neural networks with rectifier linear unit (ReLU) activation function. We provide the convergence rate of the proposed deep neural networks estimator in terms of the empirical norm. Through Monte Carlo simulation studies, we examine the finite sample performance of the proposed method. Finally, the proposed method is applied to analyse positron emission tomography images of patients with Alzheimer's disease obtained from the Alzheimer Disease Neuroimaging Initiative database.more » « less
An official website of the United States government

Full Text Available